Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Tuberculosis (Edinb) ; 136: 102253, 2022 09.
Article in English | MEDLINE | ID: covidwho-2004564

ABSTRACT

Tuberculosis (TB) stays a major cause of death globally after COVID-19 and HIV. An early diagnosis to control TB effectively, needs a fast reliable diagnostic method with high sensitivity. Serodiagnosis involving polyclonal antibodies detection against an antigen of Mycobacterium tuberculosis (Mtb) in serum samples can be instrumental. In our study, Rv3874 and Rv3875 antigens were cloned, expressed, and purified individually and as a chimeric construct in Escherichia coli BL21. Enzyme-Linked Immunosorbent Assay (ELISA) based findings revealed that the Rv3874-Rv3875 chimeric construct was two-fold more sensitive (59.7%) than the individual sensitivities of Rv3874 (28.4%) and Rv3875 (24.9%) for 201 serum TB positive samples. Furthermore, the fusion construct was a little more sensitive (60.4%) for male subjects than that for females (58.8%). Lastly, our preliminary findings, molecular insights of secondary structure, and statistical and in silico analysis of each construct also advocate that CEP can be considered a better immunodiagnostic tool in addition to previously reported EC skin test.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Antigens, Bacterial , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli , Female , Humans , Male , Mycobacterium tuberculosis/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sensitivity and Specificity , Serologic Tests , Tuberculosis/diagnosis
2.
PLoS One ; 16(7): e0254367, 2021.
Article in English | MEDLINE | ID: covidwho-1304472

ABSTRACT

COVID-19 serological test must have high sensitivity as well as specificity to rule out cross-reactivity with common coronaviruses (HCoVs). We have developed a quantitative multiplex test, measuring antibodies against spike (S) proteins of SARS-CoV-2, SARS-CoV, MERS-CoV, and common human coronavirus strains (229E, NL63, OC43, HKU1), and nucleocapsid (N) protein of SARS-CoV viruses. Receptor binding domain of S protein of SARS-CoV-2 (S-RBD), and N protein, demonstrated sensitivity (94% and 92.5%, respectively) in COVID-19 patients (n = 53), with 98% specificity in non-COVID-19 respiratory-disease (n = 98), and healthy-controls (n = 129). Anti S-RBD and N antibodies appeared five to ten days post-onset of symptoms, peaking at approximately four weeks. The appearance of IgG and IgM coincided while IgG subtypes, IgG1 and IgG3 appeared soon after the total IgG; IgG2 and IgG4 remained undetectable. Several inflammatory cytokines/chemokines were found to be elevated in many COVID-19 patients (e.g., Eotaxin, Gro-α, CXCL-10 (IP-10), RANTES (CCL5), IL-2Rα, MCP-1, and SCGF-b); CXCL-10 was elevated in all. In contrast to antibody titers, levels of CXCL-10 decreased with the improvement in patient health suggesting it as a candidate for disease resolution. Importantly, anti-N antibodies appear before S-RBD and differentiate between vaccinated and infected people-current vaccines (and several in the pipeline) are S protein-based.


Subject(s)
Antibodies, Viral , COVID-19 , Chemokines , Coronavirus Nucleocapsid Proteins , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Chemokines/blood , Chemokines/immunology , Coronavirus Nucleocapsid Proteins/blood , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Macaca mulatta , Male , Middle Aged , Phosphoproteins/blood , Phosphoproteins/immunology , Rabbits , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology
3.
Front Physiol ; 12: 663869, 2021.
Article in English | MEDLINE | ID: covidwho-1191700

ABSTRACT

Polyunsaturated fatty acids are metabolized into regulatory lipids important for initiating inflammatory responses in the event of disease or injury and for signaling the resolution of inflammation and return to homeostasis. The epoxides of linoleic acid (leukotoxins) regulate skin barrier function, perivascular and alveolar permeability and have been associated with poor outcomes in burn patients and in sepsis. It was later reported that blocking metabolism of leukotoxins into the vicinal diols ameliorated the deleterious effects of leukotoxins, suggesting that the leukotoxin diols are contributing to the toxicity. During quantitative profiling of fatty acid chemical mediators (eicosanoids) in COVID-19 patients, we found increases in the regioisomeric leukotoxin diols in plasma samples of hospitalized patients suffering from severe pulmonary involvement. In rodents these leukotoxin diols cause dramatic vascular permeability and are associated with acute adult respiratory like symptoms. Thus, pathways involved in the biosynthesis and degradation of these regulatory lipids should be investigated in larger biomarker studies to determine their significance in COVID-19 disease. In addition, incorporating diols in plasma multi-omics of patients could illuminate the COVID-19 pathological signature along with other lipid mediators and blood chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL